Abstract
We present a ‘CLAssifier-DECoder’ architecture (ClaDec) which facilitates the comprehension of the output of an arbitrary layer in a neural network (NN). It uses a decoder to transform the non-interpretable representation of the given layer to a representation that is more similar to the domain a human is familiar with. In an image recognition problem, one can recognize what information is represented by a layer by contrasting reconstructed images of ClaDec with those of a conventional auto-encoder(AE) serving as reference. We also extend ClaDec to allow the trade-off between human interpretability and fidelity. We evaluate our approach for image classification using Convolutional NNs. We show that reconstructed visualizations using encodings from a classifier capture more relevant information for classification than conventional AEs. Relevant code is available at https://github.com/JohnTailor/ClaDec.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.