Abstract
Replicating the human ability to connect Vision and Language has recently been gaining a lot of attention in the Computer Vision and the Natural Language Processing communities. This research effort has resulted in algorithms that can retrieve images from textual descriptions and vice versa, when realistic images and sentences with simple semantics are employed and when paired training data is provided. In this paper, we go beyond these limitations and tackle the design of visual-semantic algorithms in the domain of the Digital Humanities. This setting not only advertises more complex visual and semantic structures but also features a significant lack of training data which makes the use of fully-supervised approaches infeasible. With this aim, we propose a joint visual-semantic embedding that can automatically align illustrations and textual elements without paired supervision. This is achieved by transferring the knowledge learned on ordinary visual-semantic datasets to the artistic domain. Experiments, performed on two datasets specifically designed for this domain, validate the proposed strategies and quantify the domain shift between natural images and artworks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.