Abstract
A new class of probabilistic sensitivity measures that quantifies the degree of association between covariates and generic targets used in classification is proposed, and it is shown that such class possesses the zero-independence property. Corresponding estimators are introduced, asymptotic consistency is proven and bootstrap is used to quantify uncertainty in the estimates. The use of the new dependence measures as explanations in a statistical machine learning context is illustrated. The resulting approach, called Xi-method, is demonstrated through applications involving different data formats: tabular, visual and textual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.