Abstract

Wind power is one of the most promising renewable energy for its abundant resources, economically competitive, and environmentally friendly. Nevertheless, the wind power is challenging used in the power generation system due to its intermittency. Therefore, to improve the utilization ratio of wind power, the common method is adopting a prediction model for scheduling the generation industries. However, the information offered by single-step models hardly assists managers control their generators, and existing multi-step prediction models ignore the temporal dependence among predicted steps. Thus, a hybrid method based on a deep-chain echo state network (DCESN) and the variational mode decomposition (VMD) is proposed to enhance the mapping capability for wind power multi-step prediction. The multiple reservoirs of deep-chain echo state network are concatenated as a chain structure, which could congregate the temporal relations among future steps, which are shown in visualized graphs. Three comparative experiments demonstrate that the proposed hybrid method has effective performance on wind power multi-step prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.