Abstract
Conceptually, high-precision manufacturing is a sequence of production and measurement steps, where both kinds of steps require to use non-deterministic models to represent production and measurement tolerances. This paper demonstrates how to effectively represent these manufacturing processes as Partially Observable Markov Decision Processes (POMDP) and derive an offline strategy with state-of-the-art Monte Carlo Tree Search (MCTS) approaches. In doing so, we face two challenges: a continuous observation space and explainability requirements from the side of the process engineers. As a result, we find that a tradeoff between the quantitative performance of the solution and its explainability is required. In a nutshell, the paper elucidates the entire process of explainable production planning: We design and validate a white-box simulation from expert knowledge, examine state-of-the-art POMDP solvers, and discuss our results from both the perspective of machine learning research and as an illustration for high-precision manufacturing practitioners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.