Abstract

We present here a regress-later based Monte Carlo approach that uses neural networks for pricing multi-asset discretely-monitored contingent claims. The choice of specific architecture of the neural networks used in the proposed algorithm provides for interpretability of the model, a feature that is often desirable in the financial context. Specifically, the interpretation leads us to demonstrate that any discretely monitored contingent claim —possibly high-dimensional and path-dependent— under Markovian and no-arbitrage assumptions, can be semi-statically hedged using a portfolio of short maturity options. We also show, for Bermudan style derivatives, how the method can be used to obtain an upper and lower bound to the true price, where the lower bound is obtained by following a sub-optimal policy, while the upper bound is found by exploiting the dual formulation. Unlike other duality based upper bounds where one typically has to resort to nested simulation for constructing super-martingales, the martingales in the current approach come at no extra cost, without the need for any sub-simulations. We demonstrate through numerical examples the simplicity and efficiency of the method for both pricing and semi-static hedging of path-dependent options.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.