Abstract

Background and objectivesParkinson’s Disease (PD) is a devastating chronic neurological condition. Machine learning (ML) techniques have been used in the early prediction of PD progression. Fusion of heterogeneous data modalities proved its capability to improve the performance of ML models. Time series data fusion supports the tracking of the disease over time. In addition, the trustworthiness of the resulting models is improved by adding model explainability features. The literature on PD has not sufficiently explored these three points. MethodsIn this work, we proposed an ML pipeline for predicting the progression of PD that is both accurate and explainable. We explore the fusion of different combinations of five time series modalities from the Parkinson’s Progression Markers Initiative (PPMI) real-world dataset, including patient characteristics, biosamples, medication history, motor, and non-motor function data. Each patient has six visits. The problem has been formulated in two ways: ❶ a three-class based progression prediction with 953 patients in each time series modality, and ❷ a four-class based progression prediction with 1,060 patients in each time series modality. The statistical features of these six visits were calculated from each modality and diverse feature selection methods were applied to select the most informative feature sets. The extracted features were used to train a set of well-known ML models including Support vector machines (SVM), random forests (RF), extra tree classifier (ETC), light gradient boosting machines (LGBM), and stochastic gradient descent (SGD). We examined a number of data-balancing strategies in the pipeline with different combinations of modalities. ML models have been optimized using the Bayesian optimizer. A comprehensive evaluation of various ML methods has been conducted, and the best models have been extended to provide different explainability features. ResultsWe compare the performance of ML models before and after optimization and using and without using feature selection. In the three-class experiment and with various modality fusions, the LGBM model produced the most accurate results with a 10-fold cross-validation (10-CV) accuracy of 90.73% using non-motor function modality. RF produced the best results in the four-class experiment with various modality fusions with a 10-CV accuracy of 94.57% using non-motor modality. With the fused dataset of non-motor and motor function modalities, the LGBM model outperformed the other ML models in both the 3-class and 4-class experiments (i.e., 10-CV accuracy of 94.89% and 93.73%, respectively). Using the Shapely Additive Explanations (SHAP) framework, we employed global and instance-based explanations to explain the behavior of each ML classifier. Moreover, we extended the explainability by implementing the LIME and SHAPASH local explainers. The consistency of these explainers has been explored. The resultant classifiers were accurate, explainable, and thus medically more relevant and applicable. ConclusionsThe select modalities and feature sets were confirmed by the literature and medical experts. The various explainers suggest that the bradykinesia (NP3BRADY) feature was the most dominant and consistent. By providing thorough insights into the influence of multiple modalities on the disease risk, the suggested approach is expected to help improve the clinical knowledge of PD progression processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.