Abstract
Accurate prognostic prediction in patients with high-grade aneruysmal subarachnoid hemorrhage (aSAH) is essential for personalized treatment. In this study, we developed an interpretable prognostic machine learning model for high-grade aSAH patients using SHapley Additive exPlanations (SHAP). A prospective registry cohort of high-grade aSAH patients was collected in one single-center hospital. The endpoint in our study is a 12-month follow-up outcome. The dataset was divided into training and validation sets in a 7:3 ratio. Machine learning algorithms, including Logistic regression model (LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were employed to develop a prognostic prediction model for high-grade aSAH. The optimal model was selected for SHAP analysis. Among the 421 patients, 204 (48.5%) exhibited poor prognosis. The RF model demonstrated superior performance compared to LR (AUC = 0.850, 95% CI: 0.783-0.918), SVM (AUC = 0.862, 95% CI: 0.799-0.926), and XGBoost (AUC = 0.850, 95% CI: 0.783-0.917) with an AUC of 0.867 (95% CI: 0.806-0 .929). Primary prognostic features identified through SHAP analysis included higher World Federation of Neurosurgical Societies (WFNS) grade, higher modified Fisher score (mFS) and advanced age, were found to be associated with 12-month unfavorable outcome, while the treatment of coiling embolization for aSAH drove the prediction towards favorable prognosis. Additionally, the SHAP force plot visualized individual prognosis predictions. This study demonstrated the potential of machine learning techniques in prognostic prediction for high-grade aSAH patients. The features identified through SHAP analysis enhance model interpretability and provide guidance for clinical decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.