Abstract

Design of high entropy alloys (HEA) presents a significant challenge due to the large compositional space and composition-specific variation in their functional behavior. The traditional alloy design would include trial-and-error prototyping and high-throughput experimentation, which again is challenging due to large-scale fabrication and experimentation. To address these challenges, this article presents a computational strategy for HEA design based on the seamless integration of quasi-random sampling, molecular dynamics (MD) simulations and machine learning (ML). A limited number of algorithmically chosen molecular-level simulations are performed to create a Gaussian process-based computational mapping between the varying concentrations of constituent elements of the HEA and effective properties like Young’s modulus and density. The computationally efficient ML models are subsequently exploited for large-scale predictions and multi-objective functionality attainment with non-aligned goals. The study reveals that there exists a strong negative correlation between Al concentration and the desired effective properties of AlCoCrFeNi HEA, whereas the Ni concentration exhibits a strong positive correlation. The deformation mechanism further shows that excessive increase of Al concentration leads to a higher percentage of face-centered cubic to body-centered cubic phase transformation which is found to be relatively lower in the HEA with reduced Al concentration. Such physical insights during the deformation process would be crucial in the alloy design process along with the data-driven predictions. As an integral part of this investigation, the developed ML models are interpreted based on Shapley Additive exPlanations, which are essential to explain and understand the model’s mechanism along with meaningful deployment. The data-driven strategy presented here will lead to devising an efficient explainable ML-based bottom-up approach to alloy design for multi-objective non-aligned functionality attainment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.