Abstract
The application of Artificial Intelligence (AI) and Machine Learning (ML) to cybersecurity challenges has gained traction in industry and academia, partially as a result of widespread malware attacks on critical systems such as cloud infrastructures and government institutions. Intrusion Detection Systems (IDS), using some forms of AI, have received widespread adoption due to their ability to handle vast amounts of data with a high prediction accuracy. These systems are hosted in the organizational Cyber Security Operation Center (CSoC) as a defense tool to monitor and detect malicious network flow that would otherwise impact the Confidentiality, Integrity, and Availability (CIA). CSoC analysts rely on these systems to make decisions about the detected threats. However, IDSs designed using Deep Learning (DL) techniques are often treated as black box models and do not provide a justification for their predictions. This creates a barrier for CSoC analysts, as they are unable to improve their decisions based on the model’s predictions. One solution to this problem is to design explainable IDS (X-IDS). This survey reviews the state-of-the-art in explainable AI (XAI) for IDS, its current challenges, and discusses how these challenges span to the design of an X-IDS. In particular, we discuss black box and white box approaches comprehensively. We also present the tradeoff between these approaches in terms of their performance and ability to produce explanations. Furthermore, we propose a generic architecture that considers human-in-the-loop which can be used as a guideline when designing an X-IDS. Research recommendations are given from three critical viewpoints: the need to define explainability for IDS, the need to create explanations tailored to various stakeholders, and the need to design metrics to evaluate explanations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.