Abstract

Generative design can be an effective approach to generate optimized factory layouts. One evolving topic in this field is the use of reinforcement learning (RL)-based approaches. Existing research has focused on the utilization of the approach without providing additional insights into the learned metrics and the derived policy. This information, however, is valuable from a layout planning perspective since the planner needs to ensure the trustworthiness and comprehensibility of the results. Furthermore, a deeper understanding of the learned policy and its influencing factors can help improve the manual planning process that follows as well as the acceptance of the results. These gaps in the existing approaches can be addressed by methods categorized as explainable artificial intelligence methods which have to be aligned with the properties of the problem and its audience. Consequently, this paper presents a method that will increase the trust in layouts generated by the RL approach. The method uses policy summarization and perturbation together with the state value evaluation. The method also uses explainable generative design for analyzing interrelationships between state values and actions at a feature level. The result is that the method identifies whether the RL approach learns the problem characteristics or if the solution is a result of random behavior. Furthermore, the method can be used to ensure that the reward function is aligned with the overall optimization goal and supports the planner in further detailed planning tasks by providing insights about the problem-defining interdependencies. The applicability of the proposed method is validated based on an industrial application scenario considering a layout planning case of 43 functional units. The results show that the method allows evaluation of the trustworthiness of the generated results by preventing randomly generated solutions from being considered in a detailed manual planning step. The paper concludes with a discussion of the results and a presentation of future research directions which also includes the transfer potentials of the proposed method to other application fields in RL-based generative design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.