Abstract

AbstractIoT sensors capture different aspects of the environment and generate high throughput data streams. Besides capturing these data streams and reporting the monitoring information, there is significant potential for adopting deep learning to identify valuable insights for predictive preventive maintenance. One specific class of applications involves using Long Short‐Term Memory Networks (LSTMs) to predict faults happening in the near future. However, despite their remarkable performance, LSTMs can be very opaque. This paper deals with this issue by applying Learning Fuzzy Cognitive Maps (LFCMs) for developing simplified auxiliary models that can provide greater transparency. An LSTM model for predicting faults of industrial bearings based on readings from vibration sensors is developed to evaluate the idea. An LFCM is then used to imitate the performance of the baseline LSTM model. Through static and dynamic analyses, we demonstrate that LFCM can highlight (i) which members in a sequence of readings contribute to the prediction result and (ii) which values could be controlled to prevent possible faults. Moreover, we compare LFCM with state‐of‐the‐art methods reported in the literature, including decision trees and SHAP values. The experiments show that LFCM offers some advantages over these methods. Moreover, LFCM, by conducting a what‐if analysis, could provide more information about the black‐box model. To the best of our knowledge, this is the first time LFCMs have been used to simplify a deep learning model to offer greater explainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.