Abstract

Climate change and rapid urban development have intensified the impact of hurricanes, especially on the Southeastern Coasts of the United States. Localized and timely risk assessments can facilitate coastal communities' preparedness and response to imminent hurricanes. Existing assessment methods focused on hurricane risks at large spatial scales, which were not specific or could not provide actionable knowledge for residents or property owners. Fragility functions and other widely utilized assessment methods cannot model the complex relationships between building features and hurricane risk levels effectively. Therefore, we develop and test a building-level hurricane risk assessment with deep feedforward neural network (DFNN) models. The input features of DFNN models cover the meta building characteristics, fine-grained meteorological, and hydrological environmental parameters. The assessment outcomes, that is, risk levels, include the probability and intensity of building/property damages induced by wind and surge hazards. We interpret the DFNN models with local interpretable model-agnostic explanations (LIME). We apply the DFNN models to a case building in Cameron County, Louisiana in response to a hypothetical imminent hurricane to illustrate how the building's risk levels can be timely assessed with the updating weather forecast. This research shows the potential of deep-learning models in integrating multi-sourced features and accurately predicting buildings' risks of weather extremes for property owners and households. The AI-powered risk assessment model can help coastal populations form appropriate and updating perceptions of imminent hurricanes and inform actionable knowledge for proactive risk mitigation and long-term climate adaptation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.