Abstract
With the rapid advancement of the Internet of Things, network security has garnered increasing attention from researchers. Applying deep learning (DL) has significantly enhanced the performance of Network Intrusion Detection Systems (NIDSs). However, due to its complexity and "black box" problem, deploying DL-based NIDS models in practical scenarios poses several challenges, including model interpretability and being lightweight. Feature selection (FS) in DL models plays a crucial role in minimizing model parameters and decreasing computational overheads while enhancing NIDS performance. Hence, selecting effective features remains a pivotal concern for NIDSs. In light of this, this paper proposes an interpretable feature selection method for encrypted traffic intrusion detection based on SHAP and causality principles. This approach utilizes the results of model interpretation for feature selection to reduce feature count while ensuring model reliability. We evaluate and validate our proposed method on two public network traffic datasets, CICIDS2017 and NSL-KDD, employing both a CNN and a random forest (RF). Experimental results demonstrate superior performance achieved by our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.