Abstract
The rapid growth and use of artificial intelligence (AI)-based systems have raised concerns regarding explainability. Recent studies have discussed the emerging demand for explainable AI (XAI); however, a systematic review of explainable artificial intelligence from an end user's perspective can provide a comprehensive understanding of the current situation and help close the research gap. The purpose of this study was to perform a systematic literature review of explainable AI from the end user's perspective and to synthesize the findings. To be precise, the objectives were to 1) identify the dimensions of end users' explanation needs; 2) investigate the effect of explanation on end user's perceptions, and 3) identify the research gaps and propose future research agendas for XAI, particularly from end users' perspectives based on current knowledge. The final search query for the Systematic Literature Review (SLR) was conducted on July 2022. Initially, we extracted 1707 journal and conference articles from the Scopus and Web of Science databases. Inclusion and exclusion criteria were then applied, and 58 articles were selected for the SLR. The findings show four dimensions that shape the AI explanation, which are format (explanation representation format), completeness (explanation should contain all required information, including the supplementary information), accuracy (information regarding the accuracy of the explanation), and currency (explanation should contain recent information). Moreover, along with the automatic representation of the explanation, the users can request additional information if needed. We have also described five dimensions of XAI effects: trust, transparency, understandability, usability, and fairness. We investigated current knowledge from selected articles to problematize future research agendas as research questions along with possible research paths. Consequently, a comprehensive framework of XAI and its possible effects on user behavior has been developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.