Abstract

Population size has made disease monitoring a major concern in the healthcare system, due to which auto-detection has become a top priority. Intelligent disease detection frameworks enable doctors to recognize illnesses, provide stable and accurate results, and lower mortality rates. An acute and severe disease known as Coronavirus (COVID19) has suddenly become a global health crisis. The fastest way to avoid the spreading of Covid19 is to implement an automated detection approach. In this study, an explainable COVID19 detection in CT scan and chest X-ray is established using a combination of deep learning and machine learning classification algorithms. A Convolutional Neural Network (CNN) collects deep features from collected images, and these features are then fed into a machine learning ensemble for COVID19 assessment. To identify COVID19 disease from images, an ensemble model is developed which includes, Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR), K-Nearest Neighbor (KNN), and Random Forest (RF). The overall performance of the proposed method is interpreted using Gradient-weighted Class Activation Mapping (Grad-CAM), and t-distributed Stochastic Neighbor Embedding (t-SNE). The proposed method is evaluated using two datasets containing 1,646 and 2,481 CT scan images gathered from COVID19 patients, respectively. Various performance comparisons with state-of-the-art approaches were also shown. The proposed approach beats existing models, with scores of 98.5% accuracy, 99% precision, and 99% recall, respectively. Further, the t-SNE and explainable Artificial Intelligence (AI) experiments are conducted to validate the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.