Abstract

To conduct preemptive essential maintenance, predictive maintenance detects the risk of unexpected shutdowns in a manufacturing system, thereby ensuring operational continuity. Traditional methods that heavily rely on the domain knowledge of expert engineers to detect any abnormal status in processing facilities are extremely time-consuming and domain-dependent. Conversely, recently studied data-driven approaches without much domain knowledge have yielded fairly good performance. However, most only identify whether the current status is normal or abnormal and do not offer any explanations or analyses. In this paper, we propose a real-time explainable anomaly detection framework for predictive maintenance in a manufacturing system. Various well-known anomaly detection algorithms are investigated to construct a framework suitable for shutdown prognosis. In addition, model interpretation techniques are also employed to provide a reasonable explanation for a detected shutdown. The experimental results on a real-world dataset derived from a chemical process show that the proposed framework could identify abnormal signs early and derive significant causes for each detected shutdown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.