Abstract

Machine learning (ML) models presented an excellent performance in the prognosis prediction. However, the black box characteristic of ML models limited the clinical applications. Here, we aimed to establish explainable and visualizable ML models to predict biochemical recurrence (BCR) of prostate cancer (PCa). A total of 647 PCa patients were retrospectively evaluated. Clinical parameters were identified using LASSO regression. Then, cohort was split into training and validation datasets with a ratio of 0.75:0.25 andBCR-related features were included in Cox regression and five ML algorithm to construct BCR prediction models. The clinical utility of each model wasevaluated by concordance index (C-index) values and decision curve analyses (DCA). Besides, Shapley Additive Explanation (SHAP) values were used to explain the features in the models. We identified 11 BCR-related features using LASSO regression, then establishing five ML-based models, including random survival forest (RSF), survival support vector machine (SSVM), survival Tree (sTree), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and a Cox regression model, C-index were 0.846 (95%CI 0.796-0.894), 0.774 (95%CI 0.712-0.834), 0.757 (95%CI 0.694-0.818), 0.820 (95%CI 0.765-0.869), 0.793 (95%CI 0.735-0.852), and 0.807 (95%CI 0.753-0.858), respectively. The DCA showed that RSF model had significant advantages over all models. In interpretability of ML models, the SHAP value demonstrated the tangible contribution of each feature in RSF model. Our score system provide reference for the identification for BCR, and the crafting of a framework for making therapeutic decisions for PCa on a personalized basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call