Abstract

The deep learning (DL) model has performed successfully in various fields, including manufacturing. DL models for defect image data analysis in the manufacturing field have been applied to multiple domains such as defect detection, classification, and localization. However, DL models require trade-offs in accuracy and interpretability. We use explainable artificial intelligence techniques to analyze the predicted results of the defect image classification model, which is considered as a “black-box” model, to produce human-understandable results. We visualize defects using layer-wise relevance propagation-based methods, fit the model into a decision tree, and convert prediction results into human-interpretable text. Our research complements the interpretation of prediction results for the classification model. The domain expert can obtain the reliability and explanatory ability for the defect classification of TFT–LCD panel data of the DL model through the results of the proposed analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.