Abstract

Tactile edge technology that focuses on 5G or beyond 5G reveals an exciting approach to control infectious diseases such as COVID-19 internationally. The control of epidemics such as COVID-19 can be managed effectively by exploiting edge computation through the 5G wireless connectivity network. The implementation of a hierarchical edge computing system provides many advantages, such as low latency, scalability, and the protection of application and training model data, enabling COVID-19 to be evaluated by a dependable local edge server. In addition, many deep learning (DL) algorithms suffer from two crucial disadvantages: first, training requires a large COVID-19 dataset consisting of various aspects, which will pose challenges for local councils; second, to acknowledge the outcome, the findings of deep learning require ethical acceptance and clarification by the health care sector, as well as other contributors. In this article, we propose a B5G framework that utilizes the 5G network's low-latency, high-bandwidth functionality to detect COVID-19 using chest X-ray or CT scan images, and to develop a mass surveillance system to monitor social distancing, mask wearing, and body temperature. Three DL models, ResNet50, Deep tree, and Inception v3, are investigated in the proposed framework. Furthermore, blockchain technology is also used to ensure the security of healthcare data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call