Abstract

Finding an expert plays a crucial role in driving successful collaborations and speeding up high-quality research development and innovations. However, the rapid growth of scientific publications and digital data makes identifying the right experts a challenging problem. Existing approaches for finding experts given a topic can be categorised into information retrieval techniques such as vector space models, document language models, and graph-based models. In this paper, we propose ExpFinder , a new hybrid model for expert finding, that integrates a novel N-gram vector space model, denoted as nVSM, and a graph-based model, denoted as μCO-HITS, that is a proposed variation of the CO-HITS algorithm. The key of nVSM is to exploit recent inverse document frequency weighting method for N-gram words, and ExpFinder incorporates nVSM into μCO-HITS to achieve expert finding. We comprehensively evaluate ExpFinder on four different datasets from the academic domains in comparison with six different expert finding models. The evaluation results show that ExpFinder is an highly effective model for expert finding, substantially outperforming all the compared models in 19% to 160.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.