Abstract
How do important members of online Question & Answer communities (who we call experts) behave? And how do they influence the discussions in which they take part? This work reports on an investigation into these questions, which we answer through analyses exploring metrics, machine learning classifiers, and recommendations. We report on several findings: the degree of expertise correlates to behavioral patterns, whereby experts would rarely ask for help, and instead, predominantly provide help to other community members; the inclusion of an expert results in longer discussions. We propose a metric (the weighted sum), which enables us to better quantify the reputations of expert members of the community. We describe the use of four machine learning classifiers for the identification of both expert users and the most significant conversations within these communities. We propose a novel approach for a recommendation system, which utilizes semantic annotations to identify topical experts and to ascertain their respective area of specialism. We foresee the suitability of our expertise-finding methods and findings to support Learning Analytics, and in scenarios where users may apply lessons learnt from our results to improve their status in a community. Our findings can also inform systems for recommending experts and discussions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.