Abstract

Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is involved. This article proposes a hierarchical system diagnosis fusion framework that considers the uncertainty based on a belief model, called subjective logic (SL), which explicitly deals with uncertainty representing a lack of evidence. The proposed system diagnosis fusion framework consists of three steps: 1) individual subjective BNs (SBNs) are designed to represent the knowledge architectures of individual experts; 2) experts are clustered as expert groups according to their similarity; and 3) after inferring expert opinions from respective SBNs, the one opinion fusion method was used to combine all opinions to reach a consensus based on the aggregated opinion for system diagnosis. Via extensive simulation experiments, we show that the proposed fusion framework, consisting of two operators, outperforms the state-of-the-art fusion operator counterparts and has stable performance under various scenarios. Our proposed fusion framework is promising for advancing state-of-the-art fault diagnosis of complex engineered systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.