Abstract
In the CQA (Community Question Answering) systems, expert finding is one of the most important subjects. The task of expert finding is aimed at discovering users with relevant expertise or experience for a given question. However, with the increasing amount of information in CQA platform, the questioner has to wait for a long time for the response of other users, and the quality of the answers that user receive is not optimistic. In view of the above problems, this paper proposes the Topic Professional Level Model (TPLM) to find the right experts for questions. The model combines both the topic model and the professional level model respectively from the two perspectives of semantic topic of textual content and link structure to calculate the user’s authority under a specific topic. Based on TPLM results, this paper proposed the TPLMRank algorithm to measure user comprehensive score to find the expert users. The experimental results on the Chinese CQA platform-Zhihu dataset show that the expert finding method based on the TPLM is superior to the traditional expert finding method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.