Abstract

Description: Among the two leading causes of death in the United States, each responsible for one in every four deaths, heart disease costs Americans $300 billion, while cancer costs Americans $216 billion per year. They also rank among the top three causes of death in Europe and Asia. In 2012 the University of Michigan Center for Public Health and Community Genomics and Genetic Alliance, with the support of the Centers for Disease Control and Prevention Office of Public Health Genomics, hosted a conference in Atlanta, Georgia to consider related action strategies based on public health genomics. The aim of the conference was consensus building on recommendations to implement genetic screening for three major heritable contributors to these mortality and cost figures: hereditary breast and ovarian cancer (HBOC), familial hypercholesterolemia (FH), and Lynch syndrome (LS). Genetic applications for these three conditions are labeled with a “Tier 1” designation by the U.S. Centers for Disease Control and Prevention because they have been fully validated and clinical practice guidelines based on systematic review support them. Methodology: The conference followed a deliberative sequence starting with nationally recognized clinical and public health presenters for each condition, followed by a Patient and Community Perspectives Panel, working group sessions for each of the conditions, and a final plenary session. The 74 conference participants represented disease research and advocacy, public health, medicine and nursing, genetics, governmental health agencies, and industry. Participants drew on a public health framework interconnecting policy, clinical intervention, surveillance, and educational functions for their deliberations. Results: Participants emphasized the importance of collaboration between clinical, public health, and advocacy groups in implementing Tier 1 genetic screening. Advocacy groups could help with individual and institutional buy-in of Tier 1 programs. Groups differed on funding strategies, with alternative options such as large-scale federal funding and smaller scale, incremental funding solutions proposed. Piggybacking on existing federal breast and colorectal cancer control programs was suggested. Public health departments need to assess what information is now being collected by their state cancer registries. The groups advised that information on cascade screening of relatives be included in toolkits for use by states. Participants stressed incorporation of family history into health department breast cancer screening programs, and clinical HBOC data into state surveillance systems. The carrying out of universal LS screening of tumors in those with colorectal cancer was reviewed. Expansion of universal screening to include endometrial tumors was discussed, as was the application of guidelines recommending cholesterol screening of children 9–11 years old. States more advanced in terms of Tier 1 testing could serve as models and partners with other states launching screening and surveillance programs. A multidisciplinary team of screening program champions was suggested as a means of raising awareness among the consumer and health care communities. Participants offered multiple recommendations regarding use of electronic health records, including flagging of at-risk family members and utilization of state-level health information exchanges. The paper contains an update of policy developments and happenings for all three Tier 1 conditions, as well as identified gaps. Conclusions: Implementation of cascade screening of family members for HBOC and FH, and universal screening for LS in CRC tumors has reached a point of readiness within the U.S., with creative solutions at hand. Facilitating factors such as screening coverage through the Patient Protection and Affordable Care Act, and state health information exchanges can be tapped. Collaboration is needed between public health departments, health care systems, disease advocacy groups, and industry to fully realize Tier 1 genetic screening. State health department and disease networks currently engaged in Tier 1 screening can serve as models for the launch of new initiatives.

Highlights

  • A Gathering to Focus on Winnable Battles in Public Health GenomicsWhen the term “public health genetics” is mentioned, what comes to mind are the hemoglobinopathy and newborn screening programs launched in the1970s

  • Ms Roche covered the ideal sequence of BRCA1/2 genetic testing, starting with an index case, assessing the risk status of various family members through the collection of a complete family history, making referrals for genetic counseling, and conducting cascade screening of appropriate relatives

  • An important take-home message from both speakers was that clinicians and public health practitioners can collaborate in the identification of at-risk individuals and family members

Read more

Summary

Introduction

A Gathering to Focus on Winnable Battles in Public Health GenomicsWhen the term “public health genetics” is mentioned, what comes to mind are the hemoglobinopathy (sickle cell + thalassemia) and newborn screening programs launched in the1970s. The Human Genome Project and progeny programs have revealed an array of genetic variants which impact the health of individuals and families. These discoveries have made possible genetic tests for numerous cancer conditions, and for certain cardiovascular diseases as well. Those in the field of Public Health Genomics envision a time when major common, chronic diseases with a significant genetic component can be assessed on a wider scale, with screening programs available to identify all those at high risk. It is important to keep in mind, that genomic applications are best initiated when a confluence of evidence and societal attitude indicate the time is ready for translation into the public domain [1]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.