Abstract

Trauma and neurodegenerative diseases commit the nervous system. After an axotomy or nerve injury in the peripheral nervous system the regeneration of the nerve fibers and reinervation of the target are seen. In central nervous system these events are restrictive, however their occurrence are related to the state of glial reaction and the synthesis of neurotrophic factors. Basic fibroblast growth factor (bFGF) has been considered an important trophic factor for neurons and astrocytes of many central nervous system regions. In this study rats were submitted to one of following neurosurgery procedures: callosotomy, pyramidectomy or complete transection of hypoglossal nerve (XII). Sham operations were made in control animals. Seven days later animals were sacrificed and their brains processed for immunohistochemistry. Coronal sections were taken from the central nervous system and incubated with antisera against the glial fibrillary acidic protein (GFAP) or neurofilament (NF), markers for astrocyte and neuronal cell body and fibers, respectively, as well as with the antiserum against the bFGF. The degree of the labelling was quantified with computer assisted stereological methods. The analysis of the NF immunoreactivity revealed a disappearance of fibers in the white matter distal to the pyramidectomy and callosotomy, however no disappearance of NF immunoreactive neurons was found in the XII nucleus following axotomy. These changes was accompanied by a massive astrocytic reaction. The reactive astrocytes synthesized increased amounts of bFGF. These findings suggest that glial reaction synthesizing neurotrophic factors may influence the wound and repair after mechanical lesions of central nervous and subsequent neuronal trophism and plasticity which may be relevant to the regenerative process of the nervous tissue

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.