Abstract

Experimental study of photonuclear reactions using Compton back scattered gamma beams at intermediate energies (from pion photoproduction threshold up to a few GeV) is reviewed. The last review of this subject was published about 10 years ago. Since then, new fundamental data on nucleon spin structure and photonuclear excitation mechanisms have appeared in the literature. Principal attention in the present review is paid to the GRAAL (Grenoble Accelerateur Anneau Laser) experiment conducted at ESRF (European Synchrotron Radiation Facility). It is shown that, in addition to the principal polarization experimental program based on high degree of gamma beam polarization, new results on different applications have been obtained. For example, total photoabsorption and partial meson photoproduction cross sections were measured with high accuracy, and a new method for studying an interaction of unstable short-lived mesons with nuclear media (tagged mesons) was proposed. New results on anisotropy of the speed of light with respect to the dipole of cosmic microwave background radiation were evaluated. It is noted that new opportunities arise due to unique conditions appearing while conducting the experiments with the Compton back scattering technique, which provides the hard photon spectrum, high degree of beam polarization, and low backgrounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call