Abstract

Summary form only given. Experimental investigation of collisions of supersonic plasma jets with metal foils and head-on collisions of two jets will be presented. The jets are produced by ablation of thin Al foils driven by 1.4MA, 250ns current pulse in a radial foil z-pinch configuration [1.2, 3] . The jets propagate with velocity of ~50-100km/s, have high degree of collimation (opening angle 2-5°) and are radiatively cooled (cooling time <;<; hydrodynamic times). Collisions of the jets with foils, as well as inter-jet collisions, create a system of strong shocks both in the central dense part of the jet and in the lower density halo plasma which surrounds the jet and moves with the same speed. The formed shock features are sustained for ~300ns, and are diagnosed with laser interferometry, optical and XUV imaging, and with Thomson scattering diagnostics. Interpretation of the results indicates that a dynamically significant magnetic fields are present in the system, balancing the ram pressure of the flow and supporting extended stationary shock structures. The results are relevant to the studies of astrophysical phenomena in the laboratory, in particular internal shocks in jets young stars, and accretion shocks, and for understanding of magnetized high energy density plasma flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.