Abstract

Recently, single photon sources have been realised by coupling InAs quantum-dots into circular micro-pillar microcavities based on distributed Bragg reflectors (DBRs). These sources can be highly efficient because the high semiconductor refractive index collects a large fraction of the spontaneous emission into the waveguide mode. We have modelled emission from circular, square, elliptical and rectangular pillars using the finite difference time domain (FDTD) method and see enhanced emission into the cavity mode and improved efficiency for coupling light out of the microcavity. The cavity Q-factors can be very high even when the pillar diameter (dimension) is comparable to the emission wavelength. In the elliptical and rectangular cavities the modes separate (in frequency) into a high-Q resonance with polarisation parallel to the long axis and a lower Q-factor resonance with polarisation orthogonal to the long axis. We compare our modelling with preliminary measurements made on micro-pillar microcavity samples containing a layer of low density InAs dots at the cavity centre.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.