Abstract

It is demonstrated experimentally that through the use of feedback control, it is possible to stabilize the no-motion (conductive) state of a fluid layer confined in a circular cylinder heated from below and cooled from above (the Rayleigh–Bénard problem), thereby postponing the transition from a no-motion state to cellular convection. The control system utilizes multiple sensors and actuators. The actuators consist of individually controlled heaters microfabricated on a silicon wafer which forms the bottom of the test cell. The sensors are diodes installed at the fluid's midheight. The sensors monitor the deviation of the fluid temperatures from preset, desired values and direct the actuators to act in such a way as to eliminate these deviations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call