Abstract

Physiological data are needed for life history studies on krill, and as parameters for input into energy budgets and models. In conjunction with moult and growth data, these may also prove useful for assessing the fishable biomass of krill. Here, the development of physiological concepts in experimental krill research is briefly evaluated, with emphasis on the gaps to be filled. Krill growth is very flexible, as well as strongly temperature and nutrition dependent. The polar Antarctic krill Euphausia superba grows as fast as the boreal species Meganyctiphanes norvegica, at least during the first 2.5 years, and the species are comparable in terms of physiological plasticity. Accordingly, as krill appear to adjust quickly to specific laboratory conditions, short-term experiments are essential if field conditions are to be reflected as closely as possible. Furthermore, direct comparisons between laboratory experiments and swarming studies in the field are advantageous. For these, M. norvegica is particularly well-suited, as swarms can be followed over longer times and more easily than in E. superba. For example, processes of moult and reproduction were found to be highly coordinated in swarms and populations of Northern krill. For this species a conceptual model of reproduction was developed based on a combination of short-term laboratory observations coupled with field data on moult and ovary stages. In further physiological experiments krill should be studied as groups when swarming. Using proxies, that is applying physiological and/or biochemical methods side by side, is a promising way to enhance the reliability of life history data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.