Abstract

Measurements have been made of the propulsive effect of supersonic combustion ramjets incorporated into a simple axisymmetric model in a free piston shock tunnel. The nominal Mach number was 6, and the stagnation enthalpy varied from 2.8 to 8.5 MJ kg−1. A mixture of 13% silane and 87% hydrogen was used as fuel, and experiments were conducted at equivalence ratios up to approximately 0.8. The measurements involved the axial force on the model, and were made using a stress wave force balance, which is a recently developed technique for measuring forces in shock tunnels. A net thrust was experienced up to a stagnation enthalpy of 3.7 MJ kg−1, but as the stagnation enthalpy increased, an increasing net drag was recorded. Pilot and static pressure measurements showed that the combustion was supersonic.The results were found to compare satisfactorily with predictions based on established theoretical models, used with some simplifying approximations. The rapid reduction of net thrust with increasing stagnation enthalpy was seen to arise from increasing precombustion temperature, showing the need to control this variable if thrust performance was to be maintained over a range of stagnation enthalpies. Both the inviscid and viscous drag were seen to be relatively insensitive to stagnation enthalpy, with the combustion chambers making a particularly significant contribution to drag. The maximum fuel specific impulse achieved in the experiments was only 175 s, but the theory indicates that there is considerable scope for improvement on this through aerodynamic design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.