Abstract
AbstractIn this paper, the application of receding horizon control to a two‐link direct drive robot arm is demonstrated. Instead of terminal constraints, a terminal cost on receding horizon control is used to guarantee stability, because of the computational demand. The key idea of this paper is to apply receding horizon control with a terminal cost derived from the energy function of the robot system. The energy function is defined as the control Lyapunov function by considering inverse optimality. In experimental results, stability and performance are compared with respect to the horizon length by applying receding horizon control and inverse optimal control to the robot arm. © 2008 Wiley Periodicals, Inc. Electron Comm Jpn, 91(5): 33–40, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10113
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.