Abstract

The absorption and desorption performances of a solid state (metal hydride) hydrogen storage device with a finned tube heat exchanger are experimentally investigated. The heat exchanger design consists of two “U” shaped cooling tubes and perforated annular copper fins. Copper flakes are also inserted in between the fins to increase the overall effective thermal conductivity of the metal hydride bed. Experiments are performed on the storage device containing 1 kg of hydriding alloy LaNi5, at various hydrogen supply pressures. Water is used as the heat transfer fluid. The performance of the storage device is investigated for different operating parameters such as hydrogen supply pressure, cooling fluid temperature and heating fluid temperature. The shortest charging time found is 490 s for the absorption capacity of 1.2 wt% at a supply pressure of 15 bar and cooling fluid temperature and velocity of 288 K and 1 m/s respectively. The effect of copper flakes on absorption performance is also investigated and compared with a similar storage device without copper flakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call