Abstract

Instabilities and long-time evolution of gravity-capillary wavetrains (ripples) with moderate steepnesses (e 19.6 Hz) – if selective amplification does not occur (see Parts 1 and 2). The experiments further show that oblique perturbations with the same frequency as the underlying wavetrain, i.e. rhombus-quartet instabilities, amplify more rapidly and dominate all other modulational instabilities. The inviscid, uncoupled NLS equations predict the existence of modulational instabilities for wavetrains with frequencies exceeding 9.8 Hz, typically underpredict the bandwidth of unstable transverse modulations, typically overpredict the bandwidth of unstable longitudinal modulations, and do not predict the dominance of the rhombus-quartet instability. When the effects of weak viscosity are incorporated into the NLS models, the predicted bandwidths of unstable modulations are reduced, which is consistent with our measurements for longitudinal modulations, but not with our measurements for transverse modulations.Both the experiments and NLS equations indicate that wavetrains in the frequency range 6.4–9.8 Hz are stable to modulational instabilities. However, in these experiments, wavetrains with sensible amplitudes excite one of the members of the Wilton ripples family. When second-harmonic resonance occurs, both the first-and second-harmonic wavetrains undergo rhombus-quartet instabilities. When third-harmonic resonance occurs, only the third-harmonic wavetrain undergoes rhombus-quartet instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.