Abstract
Experiments simulating flow in the Earth's liquid core induced by luni-solar precession of the solid mantle indicate, to a first approximation, that the core behaves like a rigidized fluid sphere spinning slower than the mantle and with its spin axis lagging the mantle spin axis in precession. Secondary flow patterns are always present. At low precession rates the fluid sphere is subdivided into a set of cylinders coaxial with the fluid spin axis, the cylinders rotating alternately at slightly faster and slower rates relative to the net retrograde motion of the fluid as a whole. Slow non-axisymmetric columnar wave patterns develop between the differentially rotating cylinders. Axial flows between the spheroidal cavity boundary and the interior are observed. Fluid motion becomes turbulent only at precession rates large enough to cause the fluid spin axis to align nearly with the precession axis. There is no evidence that the Earth's liquid spin axis direction departs more than a fraction of a degree from geographic north. Our observations suggest precession induces a complex variety of laminar flows, including slowly varying and/or periodic patterns, in the Earth's liquid core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.