Abstract

The coefficient of contribution method, in which the extreme response is determined by considering only the few most important sea states, is an efficient way to do nonlinear long-term load analyses. To furthermore efficiently find the nonlinear short-term probability distributions of the vessel responses in these sea states, response conditioned wave methods can be used. Several researchers have studied the accuracy of response conditioned wave methods for this purpose. However, further investigations are necessary before these can become established tools. In this paper we investigate the accuracy by comparing the short-term probability distributions obtained from random irregular waves with those from response conditioned waves. We furthermore show how response conditioned wave methods can be fitted into a long-term response analysis. The numerical and experimental investigations were performed using a container vessel with a length between perpendiculars of 281 m. Numerical simulations were done with a nonlinear hydroelastic time domain code. Experiments were carried out with a flexible model of the vessel in the towing tank at the Marine Technology Centre in Trondheim. The focus was on the probability distributions of the midship vertical hogging bending moments in the sea states contributing most to the hogging moments with a mean return period of 20 years and 10 000 years. We found that the response conditioned wave methods can very efficiently be used to accurately determine the nonlinear short-term probability distributions for rigid hulls, but either accuracy or efficiency is to a large effect lost for flexible hulls, when slamming induced whipping responses are accounted for.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.