Abstract

Magnetic fluid rotary vacuum seals have been shown to be effective in machinery operating in a vacuum chamber. Such seals have the advantages of simple design, zero leakage at almost any rotation speed, and low friction. They have no wear and require no maintenance. This paper presents results obtained from experimental investigations of the operation of magnetic fluid rotary seals under vacuum conditions. The paper discusses the test apparatus and the seals used, the test conditions, and the procedure. The experimental results show characteristic phenomena observed in magnetic fluid rotary vacuum seals, including changes in vacuum pressure, temperature, and frictional moment dependent on the rotation speed of the shaft, number of sealing stages, height of the sealing gap, and mean magnetic flux density in the sealing gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.