Abstract
Abstract A series of tests was performed with a laboratory-scale model ship to simulate the effects of ice load parameters on an icebreaking tanker. A model of the icebreaking tanker Uikku was mounted on a rigid carriage and towed through an unbroken ice sheet in the ice tank of the Marine Technology Group at Aalto University. Two ice sheets and 11 different experimental configurations were used. The carriage speed, heading angle of the model ship, and ice thickness were varied, and the forces, accelerations, ice cusp sizes, carriage positions, and ice pile dimensions under the intact ice sheets were measured. This paper includes results for the measurements of ice rubble loads against the model hull in the horizontal plane. Phenomena such as ice failure modes and ice rubble accumulation on the upstream side of the hull beneath the ice sheet were observed in some tests. The icebreaking lengths and dimensions of ice rubble were analyzed for some tests. The effects of towing speed, heading angle under the intact ice sheet in front of the hull, and the accompanying ice loads on the formation and build-up of ice rubble were analyzed. In addition, the evolution of ice rubble geometry, in cross sections and the horizontal plane, was investigated. There was good agreement over several orders of magnitude between the measured and calculated values of the lateral ice forces. These results are relevant to the modeling of ice loading on hulls and the design of moored or dynamic positioned structures for operation in ice-covered waters. Some parameters obtained from these tests can be used as input for future numerical simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.