Abstract
Based on the drying technology principle of lithium-ion battery cathode coating, the variation law of dry base moisture content and drying rate in the process of hot-air drying and infrared drying was studied. The experimental results show that the cathode coating of lithium-ion battery dried under hot-air and infrared conditions can be divided into three stages: increasing-rate, constant-rate, and falling-rate. The constant-rate stage is the main drying stage, accounting for more than 50% of the weight loss, the falling-rate stage is the main energy consumption stage, accounting for more than 50% of the time. Under the condition of hot-air, the change level of airspeed is the main influencing factor of the drying process, and the drying time can be reduced by about 35% for each 0.7 m/s increase in airspeed. Under infrared conditions, the change level of radiation power is the main influencing factor of the drying process, and the drying time can be reduced by about 34.1% for every 100W of power increase. The optimal drying conditions under hot-air conditions are: air temperature 90 °C, airspeed 2.3 m/s; the optimal drying conditions under infrared conditions are: radiation distance 13 cm, radiation power 200 W. By comparing the best conditions of hot-air and infrared, it can be known that the drying efficiency is higher in the infrared condition and the drying duration is 160 s, but the energy utilization rate in the falling-rate stage in the infrared condition is lower than that in the hot-air condition. Therefore, when infrared drying enters the falling-rate stage, it can be supplemented by hot-air drying to further improve the drying efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.