Abstract

Recent results from flutter experiments of the supercritical airfoil NLR 7301 at flow conditions near the transonic dip are presented. The airfoil was mounted with two degrees of freedom in an adaptive solid-wall wind tunnel, and boundary-layer transition was tripped. Two limit-cycle oscillation (LCO) test cases obtained in an adaptive test-section are proposed for comparison with numerical simulations. The results link the global aerodynamic force behavior to the observed LCOs and the identified transonic dip. The time lag of the lift response to the pitching motion of the airfoil appears to be responsible for the characteristic shape of the transonic dip. The amplitude limitation of the LCOs results from a slightly nonlinear dependency of lift and moment on the amplitude of the airfoil motion. LCOs can be controlled by relatively small forces, but amplitudes strongly depend on the damping of the aeroelastic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.