Abstract
Clustering a graph means identifying internally dense subgraphs that are only sparsely interconnected. Formalizations of this notion lead to measures that quantify the quality of a clustering and to algorithms that actually find clusterings. Since, most generally, corresponding optimization problems are hard, heuristic clustering algorithms are used in practice, or other approaches that are not based on an objective function. In this work, we conduct a comprehensive experimental evaluation of the qualitative behavior of greedy bottom-up heuristics driven by cut-based objectives and constrained by intracluster density, using both real-world data and artificial instances. Our study documents that a greedy strategy based on local movement is superior to one based on merging. We further reveal that the former approach generally outperforms alternative setups and reference algorithms from the literature in terms of its own objective, while a modularity-based algorithm competes surprisingly well. Finally, we exhibit which combinations of cut-based inter- and intracluster measures are suitable for identifying a hidden reference clustering in synthetic random graphs and discuss the skewness of the resulting cluster size distributions. Our results serve as a guideline to the usage of bicriterial, cut-based measures for graph clusterings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.