Abstract
The effects of isolated, cylindrical roughness elements on laminar–turbulent transition in a flat-plate boundary layer are investigated in a laminar water channel. Our experiments aim at providing a comparison to global linear stability theory (LST) by means of hot-film anemometry and particle image velocimetry. Although the critical Reynolds number from theory does not match the transition Reynolds number observed in experiments, there are distinct experimental observations indicating a changeover from purely convective to absolute/global instability very close to the critical Reynolds number predicted by theory. Forcing with a vibrating wire reveals the evolution of the system dynamics from an amplifier to a wavemaker when the critical Reynolds number is exceeded. The mode symmetry is varicose for thick roughness elements and a changeover from varicose to sinuous modes is observed at the critical Reynolds number for thin roughness elements. Therefore, most predictions by global LST can be confirmed, but additional observations in the physical flow demonstrate that not all features can be captured adequately by global LST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.