Abstract
The first macroscopic bodies in protoplanetary disks are dust aggregates. We report on a number of experimental studies with dust aggregates formed from micron-size quartz grains. We confirm in laboratory collision experiments an earlier finding that producing macroscopic bodies by the random impact of sub-mm aggregates results in a well-defined upper-filling factor of 0.31 \pm 0.01. Compared to earlier experiments, we increase the projectile mass by about a factor of 100. The collision experiments also show that a highly porous dust-aggregate can retain its highly porous core if collisions get more energetic and a denser shell forms on top of the porous core. We measure the mechanical properties of cm-sized dust samples of different filling factors between 0.34 and 0.50. The tensile strength measured by a Brazilian test, varies between 1 kPa and 6 kPa. The sound speed is determined by a runtime measurement to range between 80 m/s and 140 m/s while Young's modulus is derived from the sound speed and varies between 7MPa and 25MPa. The samples were also subjected to quasi-static omni- and uni-directional compression todetermine their compression strengths and flow functions. Applied to planet formation, our experiments provide basic data for future simulations, explain the specific collisional outcomes observed in earlier experiments, and in general support a scenario where collisional growth of planetesimals is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.