Abstract
The resistance of automotive air filters alters upstream pressure gradients and thereby affects flow separation, the velocity distributions over the filter, and the performance of the filter. Air filters provide a resistance sufficient to alter flows, but not enough to make face velocities uniform. The backward-facing step flow is an archetype with a separation that resembles those found in automotive air filter housings. To gain insight to the problem of separation and filters, experiments were conducted measuring velocity fields for air flows in a 10:1 aspect ratio rectangular duct with a backward-facing step with and without the resistance of an air filter mounted downstream. The expansion ratio for the step was 1:2. The filter was mounted 4.25 and 6.75 step heights downstream of the step; locations both upstream and downstream of the nominal 6 step-height no-filter reattachment point. Experiments were performed at four Reynolds numbers between 2000 and 10,000. The Reynolds numbers were based on step height and inlet maximum velocity. The inlet velocity profiles at the step were developed. A Laser Doppler Anemometer (LDA) was used to measure velocity profiles and map separated regions between the step and the filter. The results indicate that the filter tends to decrease the streamwise velocity on the non-separated side of the channel and increase it on the separated, step, side compared to the no-filter flow. Non-separated flow tends to separate due to the deceleration and separated flow reattaches before the filter, whether the filter is placed at 4.25 or 6.75 step heights. The literature shows that without a filter the reattachment location depends on the Reynolds number in the laminar and transitional regimes, but is constant for turbulent flow. However, the area of the reversed flow may vary with Reynolds number for turbulent flow. With the filter at 4.25 step heights, the area of reversing flow is reduced significantly, and the Reynolds number has little effect on the main properties of the flow. With the filter at 6.75 step heights, the reversing flow area decreases as the Reynolds number increases though the reattachment point is fixed just upstream of the filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.