Abstract

Laser-Doppler measurements of mean velocity components and Reynolds stresses are reported in the near-field of a stable swirling flame of a newly designed natural-gas-fired experimental burner. The swirling motion is generated by the rotating outer pipe of the annular air passage, thus providing well defined inflow conditions which can be easily reproduced in computational and modelling studies. Prior to LDA measurements, burner stability characteristics were determined in terms of gas flow rate and pipe rotation speed. The measurements, corresponding to a stable, short, blue flame regime, show that the flow and combustion are dominated by a distinct, standing toroidal vortex, providing a hot core as source of stabilisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.