Abstract
The Jacobi–Davidson (JD) algorithm is very well suited for the computation of a few eigen-pairs of large sparse complex symmetric nonlinear eigenvalue problems. The performance of JD crucially depends on the treatment of the so-called correction equation, in particular the preconditioner, and the initial vector. Depending on the choice of the spectral shift and the accuracy of the solution, the convergence of JD can vary from linear to cubic. We investigate parallel preconditioners for the Krylov space method used to solve the correction equation.We apply our nonlinear Jacobi–Davidson (NLJD) method to quadratic eigenvalue problems that originate from the time-harmonic Maxwell equation for the modeling and simulation of resonating electromagnetic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.