Abstract

The purpose of this research is to elucidate the mechanism of aerodynamic force generation and control in flapping flight of a mosquito. In this paper, a tenfold enlarged realistic model of the flapping wing was used to simulate the motion of the mosquito's wing and flow pattern around it. Experiments were conducted using a very low speed wind tunnel to coincide the condition of Reynolds and Strouhal numbers with those of real mosquito. The flow field around the wing model was analyzed by a stereo-PIV system. The aerodynamic forces generated by the model wings were calculated by using a momentum conservation law applied to the flow field. In these experiments, two unsteady ring vortexes around model wings were observed. The magnitude and direction of the jet flow induced by the ring vortex were greatly influenced by the attack angle. It was found that the lift was generated during the down-stroke and the thrust during the up-stroke in the real mosquito's flight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.