Abstract

We present a learning system, socially guided exploration, in which a social robot learns new tasks through a combination of self-exploration and social interaction. The system's motivational drives, along with social scaffolding from a human partner, bias behaviour to create learning opportunities for a hierarchical reinforcement learning mechanism. The robot is able to learn on its own, but can flexibly take advantage of the guidance of a human teacher. We report the results of an experiment that analyses what the robot learns on its own as compared to being taught by human subjects. We also analyse the video of these interactions to understand human teaching behaviour and the social dynamics of the human-teacher/robot-learner system. With respect to learning performance, human guidance results in a task set that is significantly more focused and efficient at the tasks the human was trying to teach, whereas self-exploration results in a more diverse set. Analysis of human teaching behaviour reveals insights of social coupling between the human teacher and robot learner, different teaching styles, strong consistency in the kinds and frequency of scaffolding acts across teachers and nuances in the communicative intent behind positive and negative feedback. †This research was conducted at the MIT Media Lab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.