Abstract

Velocity spectra of electrons emitted into the forward direction have been measured for 0.7--8.5-MeV/u projectile ions traversing He, Ne, and Ar targets, polycrystalline solids (C, Al, Ag, Au), and axial channels in gold. Spectral shapes and yields are compared and contrasted with one another and with theories which seek to account for the cusp-shaped peaks observed in terms of electron capture and loss to low-lying projectile-centered continuum states. We report the results of both singles and coincidence measurements, where the dependence of cusp shapes and yields on the emergent-ion charge state are examined. For electron capture to the continuum (ECC), variance is noted with respect to the simple, first-order theory of Dettmann, Harrison, and Lucas. The ECC yields are compared to experimental and theoretical studies of bound-state capture, especially to high Rydberg states. For electron loss to low-lying continuum states (ELC), variance is noted with respect to the corresponding theories of Briggs, Drepper, and Day, and ELC cross sections are compared to total electron-loss cross sections. For convoy electron production in solids, no known theory accounts for the results. As in ELC processes, convoy cusp widths are observed to be velocity independent. Convoy electron yields are also observed to bemore » independent of emergent-ion charge state.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call